Analyzing Deep Learning Model Inferences
for Image Classification using OpenVINO

Zheming Jin (zjin@anl.gov)

Acknowledgement: This work used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of Science User

Facility supported under Contract DE-AC02-06CH11357.
“2/ENERGY

Motivation

= Deep learning model inference on an integrated GPU may
be desirable

= Deep learning model inference on a CPU is still of interests
to many people

= Gain a better understanding of how a model is executed
using the vendor-specific high-performance library on a
GPU, and the effectiveness of using the half-precision
floating-point format and 8-bit model quantization

The OpenVINO Toolkit

OpenVINO for Inference

[Inference App I i1,
' | DL Inference Engine API |

Heterogeneous Execution Engine

CPUPlugin | | GPUPlgin | | VPUPugin || FPGAPlugin |

_maown] [aow) [wwwe

h! i e
CPU | GPU | VPU

Single interface supports all platforms, no SW change.
Library designed for CMN inference accelerationon Intel HW

Image credit: Intel

Summary of optimizing and deploying a pretrained
Caffe model

= Convert a Caffe model to intermediate representation
(IR) using the Model Optimizer for Caffe

— IR consists of .xml (network topology) and .bin (weights and
biases binary) files

— Optimized IR: node merging, drop unused layers, etc.

= Test the model using the Inference Engine via the
sample applications

— C++ APIs to read IR, set input/output formats, and execute the
model on a device

— Heterogeneous plugin for each device (CPU, GPU, FPGA, etc.)

Experimental setup (continued)

= Intel Xeon E3-1585v5 microprocessor

— CPU: four cores and each core supports two threads

— Integrated GPU: 72 execution units

= OpenCL 2.1 NEO Driver: version 19.48.14977
= API version of the inference engine is 2.1
CPU/GPU plugins build version is 32974

= Operating system is Red Hat Linux Enterprise 7.6
(kernel version 3.10.0-957.10.1)

Experimental setup

= Choose Pretrained Caffe models, which will be shown in
the next slide, for image classification from Open Model
Z00

= Calibration dataset is 2000, a subset of ImageNet 2012
validation set

= Measure the latency of model inference
— Batch size and the number of infer requests are one

— Latency is averaged over 32 iterations

= Note INT8 inference on the integrated GPU and FP16
inference on the CPU are currently not supported

Performance of 14 pretrained Caffe models for

image classification

TABLE L PERFORMANCE OF MODEL INFERENCES. [INT8 INFERENCE
ON THE GPU AND FP16 INFERENCE ON THE CPU ARE NOT SUPPORTED.
. CPU iGPU
Unit: FPS -
FP32 INTS FP32 FPI16
AlexNet 79 89 275 331
VGG16 10 15 27 58
DenseNet-121 59 75 53 65
DenseNet-169 20 31 23 30
GoogleNet-v1 107 154 154 174
GoogleNet-v4 15 23 23 35
ResNet-50 53 78 o1 139
ResNet-101 25 39 45 71
SqueezeNetl.0 212 302 295 370
SqueezeNetl.1 462 573 454 502
Inception-ResNet-v2 14 19 20 30
MobileNet-v1-1-224 275 335 337 472
MobileNet-v2 307 315 267 332
SE-ResNext-50 21 32 28 34

Results obtained using an Intel Xeon E3-1585 v5 microprocessor
CPU: four cores, two thread per core, running at 3.5 GHz
Integrated GPU (iGPU): 72 executing units running at 1.1.5 GHz

Performance comparison between the CPU and GPU
GPU speedup

se-resnext-50
mobilenet-v2
mobilenet-v1-1.0-224
inception-resnet-v2
squeezenetl.l
squeezenetl .0
resnet-101
resnet-50
googlenet-v4
googlenet-vl
densenet-161
densenet-121
vggl6

alexnet

=
-
_h
_
f—
LA
k-2
[
_h
L
L
_h

Fig. 1. Performance speedup of FP32 model inferences using the 1iGPU

Results obtained using an Intel Xeon E3-1585 v5 microprocessor
CPU: four cores, two thread per core, running at 3.5 GHz
iGPU: 72 executing units running at 1.1.5 GHz

Implementation of Squeezenet1.1 using ciIDNN

input imaage
227522753

Y

reorder_data
gws: (51529, 3, 1)
Iws: (227,1, 1)

reordered

weights

!

generic_eltwise
gws: {51529, 3, 1)
Iws: (227, 1, 1)

v

)

comvixl

gws:(28, 1008, 1)
Iwes: (1, 16, 1)

conv.3x3
6 filkers, stride2x2

e

gws: (1695, 64, 1)
Iws: (1, 16, 1)

reorder_weaights

conv3x3

gws: (64,3, 9) [€
lws: (64, 1, 1)

.

|

maxpool3x3
o ghidezxz

| podling_gpu_blocked

agws: (392, 64, 1)
Iws: (1, 16, 1)

comvlx] (squeeze)

.16 filters, stridetxt
bfyx_f16 1x1 —

aws: (392, 16, 1)
hws: (1, 16, 1)

reordered
weights

v

¥

conv1x1 {expand)
64 filkers, stridelx1

com3x3 (expand)
|0 filters, stridelxl, padl

bfyx_F16_1x1
gws: (392, 64, 1)
lwes: (1, 16, 1)

gws: (392, 64, 1)
Iws: (1, 16, 1)

'

|

e

I
I
I
I
I
Tbfyx_fi6 <+
I
I
|

weights

k
e Bvgpoolidad

pooling_gpu_block
agws: (1, 1008, 1)
lws: {1, 16, 1)

reordered
weights

|

reorder_data_fast
gws: (1024, 1, 1)
bws: (32, 1, 1)

|

_ softmax

............ Sk e
gws: (32,1, 1)
lws: (32,1, 1)

!

reorder_data_fast
gws: (1024, 1, 1)
bws: (32, 1, 1)

|

Probabilities

recrdered
weights

TABLEIL

Squeezenet 1.1 on the CPU (MKLDNN) and GPU

IMPLEMENTATIONS OF EACH LAYER ON THE DEVICES

Laver name

GPU impl. (FP32)

CPU impl. (INTS)

mput recrder reorder data Jit mm I8
scaleShaft/Add zenenc eltwise ref jit_awvx2 FP32
mieger ScaleSmft'Add | N/A reorder it um FP32
conv] bfyx_to_bfix _fl6 poochng jit_avx? I8
conv] refln ophmzed away ophmmzed away
fire N squeezel=1 bfx fl6 1x1 poochng it avx? I8
fire N'squeezel=<] relu | optmwzed away ophmmzed away

fire Nexpand 1 =1 bfyx fl6 1xl1 poohng it awvx? I8
fire N'exrpand 1 <1 _relu ophmzed away ophmmzed away

fire N excpand 3 < 3 bfyx flb poohnz it avx? I8
fire Neopand3 <3 reln ophmized away optmuzed away

fire N'concat ophmazed away concat_ref I8
maxpooll poohng_gpu_blocked | pochng jit_awvx? I8
maxpoonl 3 poolng gpu blocked | pochnz gt awx? I8
maxpool poohng gpu blocked | poochng it awx? I8
conv] () bfyx fl6 poohnz jit avx? I8
conv 1) reorder MN/A reorder jit um FP32
avepooll() poohng blocked poohnz gt avx FP12
avgpooll(reorder reorder data fast MNIA

softmax softmax bf softmax ref any FP32

postprocess

reorder data fast

reorder it um FP32

Comparison to other studies [1,2]

= FP32 image classification and object detection on an Intel
Skylake 18-core CPU with the AVX512 instruction set

— Current work is focused on the performance improvement using an
AVX-2 CPU which is common for edge devices

= Performance of three image classification models using
OpenVINO on the AWS Deeplens platform that features an
Intel Graphics HD 505 iGPU

— Current work obtains 10X more speedup on our iGPU using the
current toolkit

[1] Liu, Y., Wang, Y., Yu, R., Li, M., Sharma, V. and Wang, Y., 2019. Optimizing CNN Model Inference on
CPUs. In 2019 USENIX Annual Technical Conference (pp. 1025-1040).

[2] Wang, L., Chen, Z., Liu, Y., Wang, Y., Zheng, L., Li, M. and Wang, Y., 2019, August. A Unified
Optimization Approach for CNN Model Inference on Integrated GPUs. In Proceedings of the 48th
International Conference on Parallel Processing

Summary

= The quantized models are 1.02X to 1.56X faster than the
FP32 models on the target CPU

= The FP16 models are 1.1X to 2X faster than the FP32
models on the target iGPU

= The iGPU is on average 1.5X faster than the CPU for the
FP32 models

o\\—_—

Thanks

